
A Wavelet Phase Filter for Emission TomographyElwood T. Olsen and Biquan Lin�Department of MathematicsIllinois Institute of TechnologyChicago, IL 60616E-mail: vefolsen@minna.iit.edu, blin@mcs.anl.govAbstractThe presence of a high level of noise is a characteristic in some tomographic imagingtechniques such as positron emission tomography. Wavelet methods can smooth out noisewhile preserving signi�cant features of images. Mallat et al. proposed a wavelet-baseddenoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise.In this study, we explore the properties of wavelet phase, with a focus on reconstruction ofemission tomography images. Speci�cally, we show that the wavelet phase of regular Poissonnoise under a Haar-type wavelet transform converges in distribution to a random variableuniformly distributed on [0, 2�). We then propose three wavelet-phase-based denoisingschemes which exploit this property: edge tracking, local phase variance thresholding, andscale phase variation thresholding. Numerical results are also presented. The numerical ex-periments indicate that wavelet-phase techniques show promise for wavelet based denoisingmethods.Keywords: Wavelet phase, image reconstruction, denoising, Haar transform1 IntroductionIn positron emission tomography (PET), some image reconstruction technique is needed to pro-cess measurements of observed photons (the \sinogram data") into an easily grasped visualimage. Image reconstruction algorithms currently in use are based on Fourier transform tech-niques. The convolution back projection (CBP) method and direct Fourier reconstruction (DFR)method [STAR81] are the most commonly used image reconstruction methods. These algorithmsare, however, sensitive to noise in the measurements. In particular, noise is a problem in emis-sion tomography. In PET applications, the sinogram data is an image that may have an average�Currently in the Mathematics and Computer Science Division of Argonne National Laboratory, supportedby the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.1



photon density of order 10 photons per pixel (nearer 100 per pixel in the numerical experimentsdescribed here) and hence is inherently noisy.One way to reduce noise sensitivity is to model the emission process as a random processand to use reconstruction algorithms based on the statistical model. In 1982, Shepp and Vardi[SHEP82] introduced a Poisson process model for emission tomography which seems to be anexcellent model. Maximum likelihood (ML) and maximum a posteriori (MAP) methods basedon this model give what we consider to be the best possible reconstruction from noisy sinogramdata.The problem with the ML and MAP techniques is that they are very expensive in comparisonwith Fourier-based techniques. The DFR method requires O(N2 logN) operations, and CBPrequires O(N3) operations, where N is the number of detectors. On the other hand, an iterativeML algorithm (called the EM algorithm) requires O(N4) operations for each iteration, and itusually takes 50 iterations to achieve su�cient precision [VARD85]. Even with accelerationtechniques such as Lewitt and Muehllehner's relaxation method [LEWI86], the EM algorithmstill remains computationally very expensive.Another way to reduce noise sensitivity is to �lter the sinogram data. Several �ltering tech-niques for emission tomography are described in the literature. Linear low-pass �lters are easyto implement in connection with Fourier-based methods and are the current method of choice.A special low-pass �lter called the parabola �lter was developed at Washington University forthe purpose of PET noise reduction. The �lter is called a \parabola" �lter because the windowfunction is a quadratic function in the frequency domain (the �lter is nonetheless a linear �lter).The window function is the product of a triangle functionu(!) = !
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 is the cuto� frequency. Yang [YANG91] implemented a noise-�ltering scheme usingprojection onto convex sets. Kuan et al. [KUAN85] developed an adaptive �lter for PET imagerestoration. According to Yang's simulation results, the parabola �lter is among the most e�ectivefor use in connection with the CBP method, from the standpoint of subjective evaluation of theresulting reconstructed image. The underlying assumption for using a low-pass �lter such asthe parabola �lter is that the energy of a typical image is primarily concentrated in its low-frequency components and that the energy of a random noise is more spread out over the wholefrequency domain. While this assumption seems to be a reasonable one even for the noise inemission tomography, it is not clear to us that this assumption alone captures the signi�cantfeatures of the noise present in emission tomography applications. In these applications, thenoise is signal-dependent Poisson-type noise. Furthermore, while the gross structure of an imageappears as low-frequency components, sharp edges as well as small detials give rise to high-frequency components. Therefore, the linear low-pass �ltering unavoidably causes some blurring2



of edges and loss of detail from the original image. These can be serious problems in medicalimaging applications, where details may contain the most important messages in the image.Conventional linear �ltering schemes investigated so far are not very satisfactory. The moti-vation of the research described here was to design an e�ective and inexpensive �lter that tookinto account the signal-dependent Poisson noise occurring in emission tomography. We wantedto obtain an improved but still inexpensive �ltering technique that could provide image qual-ity from inexpensive Fourier methods comparable to that achievable with expensive ML-typemethods.The �lter we have developed is based on a wavelet technique. Basically, edges in a wavelettransform of the sinogram data at several scales are obtained by using a magnitude (or modulusmaximum) method, spurious edges are discarded by using wavelet \phase" information, and a�ltered or restored sinogram is obtained from retained (and, one hopes, \true") edges at variousscales. The CBP or DFR method is then used to reconstruct the image from the restoredsinogram.Signal restoration techniques based on wavelets are often designed and tested using one-dimensional signals, then applied to two-dimensional signals (images). Mallat et al. [MALL92a,1992b] proposed a multiscale edge detection and reconstruction scheme that makes use of modulusmaxima of wavelet transforms. Our technique is based on that of Mallat et al., but it makes use ofthe \phase," or direction, of the two-dimensional wavelet transform as well as the magnitude of itsmodulus. The phase is a characteristic of two-dimensional wavelets without a one-dimensionalcounterpart. Numerical experiments indicate that wavelet phase methods show promise fordenoising in emission tomography applications.The remainder of this paper is organized as follows: Section 2 introduces wavelet-baseddenoising methods, including wavelet phase based-�ltering schemes proposed here. Section 3describes numerical experiments and discusses results.2 Wavelet-based DenoisingIn this section, we summarize image representation and restoration methods, proposed by Mallatand Hwang [MALL92a] and Mallat and Zhong [MALL92b], that are based on wavelet modulusmaxima. We then introduce wavelet phase-based methods.Wavelet Modulus and Phase. Let f denote a discrete image; g, a low-pass �lter; hx, ahighpass �lter in the x direction; and hy, a highpass �lter in the y direction. Letg0 = 1 (1)gj = gj�1 ? g; j > 0; (2)3



where ? denotes a linear convolution. The wavelet transform of the image f at scale j is de�nedby (W jxf;W jy f; Sjf) = (hx ? (gj�1 ? f); hy ? (gj�1 ? f); gj ? f): (3)The original image f = S0f can be reconstructed by an inverse wavelet transform:Sj�1f = h�x ? W jxf + h�y ? W jy f + g� ? Sjf; (4)where h�x, h�y, and g� satisfyh�x ? hx(m;n) + h�y ? hy(m;n) + g� ? g(m;n) = �(m;n); (5)where �(m;n) is equal to 1 if m = n = 0, and equal to 0 otherwise.In our study, the �lters g, hx, and hy are those of the 2D symmetric Haar transform:hx = 14 264 1 0 �10 0 01 0 �1 375 ; (6)hy = 14 264 �1 0 �10 0 01 0 1 375 ; (7)and g = 18 26666664 1 0 0 0 10 0 0 0 00 0 4 0 00 0 0 0 01 0 0 0 1 37777775 : (8)Let h�x = �hx, h�y = �hy, and g�(i; j) = �(i; j). Then, hx, hy, g, h�x, h�y, and g� satisfy (5), sothat the original image can be reconstructed by an inverse wavelet transform (4).The wavelet modulus of f at scale j is de�ned byM jf = q(W jxf)2 + (W jy f)2; (9)and the wavelet phase of f at scale j is de�ned byP jf = ArctanW jy fW jxf (10)= 8>>>><>>>>: arctan W jy fW jxf W jxf � 0;W jy f � 0arctan W jy fW jxf + � W jxf < 0arctan W jy fW jxf + 2� W jxf � 0;W jy f < 0: (11)4



The wavelet transform (W jxf;W jyf) at scale j is the gradient of some smoothed version of theimage f (though not, in general, the smoothed version of the image obtained by forming theconvolution f ? gj). Edges in the smoothed version of a signal are identi�ed with curves alongwhich the modulus of the gradient is large. The local tangent to an edge curve can be expectedto be perpendicular to the gradient direction and to vary in a smooth manner from pixel to pixelalong the edge, if the edge is a true edge and not an artifact of noise. This expected correlationin the phase of the wavelet transform at neighboring modulus maxima locations, together withthe complementary fact (discussed below) that the wavelet phase associated with noise can beexpected to be nearly uniformly distributed on the interval [0; 2�), is the key fact that the waveletphase-based methods proposed here are designed to exploit.Wavelet Modulus Maxima Method. In the early 1980s, Marr and Hildreth [MARR80]introduced the multiscale edge detection method. They provided a scheme that �lters the originalimage via a series of low-pass �lters with di�erent cuto� frequencies (scales) and detects edgesfor each �ltered image. In their approach, a Gaussian-type low-pass �lter is used as the low-pass�lter, and the Laplacian method is used to �nd edge locations in the �ltered images. Mallatand Zhong [MALL92b] re�ned Marr and Hildreth's approach in the setting of wavelets. In theirtechnique, the wavelet transform of a noisy image is obtained, and all components of the wavelettransform except those corresponding to modulus maxima are discarded (in e�ect, set to zero).Since noise gives rise to spurious modulus maxima in the wavelet transform, only those modulusmaxima above a certain threshold value are retained; alternatively, since modulus maxima dueto noise are expected to decay more rapidly from scale to scale than modulus maxima due totrue edges, only those modulus maxima that exhibit the correct decay rate from scale to scaleare retained. Thus, some modulus maxima are attributed to noise and are discarded, or set tozero, along with the wavelet transform components at non-modulus-maximum locations. Themethod of Mallat et al., unlike that of Marr and Hildreth, is associated with a natural techniquefor reconstructing the image from the edge data. The discarded components of the wavelettransform are replaced via interpolation from the retained components, the \true" modulusmaxima of the wavelet transform, and an inverse wavelet transform is then performed. Thealgorithm is summarized as follows:1. Take discrete wavelet transforms of the contaminated image.2. Obtain edge locations by �nding local modulus maxima of wavelet transforms.3. Remove those edges whose moduli either are below a given threshold or else decay fasterthan some given ratio or both.4. Restore discarded wavelet transform components by using an interpolation scheme.5. Reconstruct signal from the restored wavelet transform by taking the inverse wavelet trans-form.Numerical experiments indicate that the algorithm behaves well, at least in applications wherethe noise level is relatively low. 5



Limitations of the Modulus-based Approach. The wavelet modulus maximummethoddoes not perform well in the medical imaging application considered here. The basic reasonseems to be that a magnitude-based scheme is sensitive to the magnitude of the noise, or moreprecisely, to the magnitude the variance of the noise. To remove noise of a large variance,the thresholds below which modulus maxima are discarded must be large. Since the noise inemission tomography applications has relatively large variance, the resulting large thresholdslead to discarding a lot of information about true edges. In addition, although it is shown in[MALL92a] that the wavelet modulus maxima of noise decay faster than modulus maxima oftrue signals from scale to scale under some circumstances, we have not observed a substantialdi�erence in the decay rates in the application considered here. See [LIN94] for details.Wavelet Phase Filter Method. As noted above the modulus maxima based method doesnot take into account the expected correlation between phase of the wavelet transform betweenneighboring edge pixels of an image. In [MALL92a], it was mentioned that one might incorporatewavelet phase information into their basic approach. We have tried to do this, and we describethe analysis and the resulting methods here.The distribution of wavelet phase of noise can be characterized, if one assumes the statisticalmodel which Shepp and Vardi developed. We state results here and refer the reader to [LIN94]for proofs of the next two theorems.Let L=f(i; j) : i; j are integersg be a two-dimensional lattice. A stochastically modeleddiscrete image is a collection of random variables indexed in the lattice L, denoted by fX(i; j) :(i; j) 2 Lg. (i; j) is referred to as a pixel. Let �(i; j) denote the mean of X(i; j). �(i; j) =X(i; j) � �(i; j) is referred to as noise. �(i; j) is called Gaussian noise if X(i; j) is Gaussiandistributed, and Poisson (or Poisson-type) noise if X(i; j) is Poisson distributed. The followingtheorem states the distribution of the wavelet phase of Gaussian noise under the 2D symmetricHaar transform.Theorem 1: Suppose that f�(i; j) : (i; j) 2 Lg are independent Gaussian noises (both withmean zero, though possibly with di�erent variances). Let Wx�(i; j) and Wy�(i; j) denote thecomponents of the 2D symmetric Haar transform of �(i; j). Then �(i; j) = ArctanWy�(i;j)Wx�(i;j) isuniformly distributed on [0, 2�) for each (i; j).For each pixel (i; j), let �n(i; j) be a sequence of Poisson noise with variance n�(i; j). The Poissonnoise �n(i; j) is said to be regular if for disjoint (i1; j1) and (i2; j2), (i) �n(i1; j1) and �n(i2; j2) areindependent; (ii) �n(i1;j1)pn�(i1;j1) and �n(i2;j2)pn�(i2;j2) converge in distribution to two independent standardGaussian random variables as n ! 1. For the 2D wavelet transforms of the regular Poissonnoise, we have the following main theorem.Theorem 2: Let Wx�n(i; j) and Wy�n(i; j) denote the components of the 2D symmetric Haartransform of regular Poisson noise �n(i; j). Then ArctanWy�n(i;j)Wx�n(i;j) converges in distribution to a6



random variable that is uniformly distributed on [0; 2�) as n!1.The signi�cance of Theorem 1 is that even though the variance of the noise can change frompixel to pixel, the phase of the Haar-type wavelet transform is identically distributed at eachlocation. Furthermore, the phases at nearest-neighbor locations are uncorrelated in the wavelettransform at scale 1. (Correlation in other neighboring locations introduced by the wavelettransform, if any, is a problem to be further investigated, but such spurious correlation seemsnot to a�ect our numerical results.)The signi�cance of Theorem 2 is that as n increases, that is to say, as the time of observationfor the emission tomography image increases, the Poisson-type noise becomes more and moresimilar to the Gaussian noise needed to apply Theorem 1. Theorem 2 is essentially a centrallimit theorem result.Wavelet Phase-based Denoising Schemes. Based on the wavelet phase properties ex-plored above, we developed the following denoising algorithms:I. Edge Tracking. As shown above, the wavelet phase of regular Poisson noise is asymptoticallyuniformly distributed on [0, 2�). On the other hand, the \true edges" of an image separate twoneighboring regions, and the neighboring edge pixels usually have similar gradient directions.Since the phase of wavelet transform of an image is the gradient direction of a smoothed versionof the image, it is reasonable to say that, for a true edge, there must exist at least one neighboringedge pixel in a direction roughly orthogonal to the gradient direction, which has a roughly similarwavelet phase. Otherwise, the edge pixel is most likely caused by noise. We developed a numericalalgorithm called \edge tracking" to implement this idea. For details of the algorithm, we referthe reader to [LIN94].II. Local Phase Variance Thresholding. Another denoising scheme that exploits wavelet phasefocuses on local wavelet phase variation. For each scale k and each pixel (i,j), letW kxf (i; j) = MkXm=�Mk MkXn=�Mk W kx f(i+m; j + n)and W kyf (i; j) = MkXm=�Mk MkXn=�Mk W ky f(i+m; j + n);where Mk is a positive integer. The mean wavelet phase at (i; j) is de�ned byP kf (i; j) = ArctanW kyf(i; j)W kxf(i; j) :The di�erence between the phase of (W kx f(i; j);W ky f(i; j))P kf(i; j) = ArctanW ky f(i; j)W kx f(i; j)7



and P kf(i; j) is expected to be small if the pixel (i; j) is \true edge" but large if the pixel (i; j)is an edge generated by noise. Therefore, one might distinguish true edges from noisy edges bythresholding P kf(i; j)� P kf(i; j). This technique is called \local phase variance thresholding."III. Scale Phase Variation Thresholding. We can also discriminate noisy edges from true edgesby considering phase changes from scale to scale. For a true edge, the wavelet phase should notchange very much from scale to scale, since the image at each scale is a smoothed version ofthe image of the previous scale. But for a spurious edge due to noise, the independence of thenoise at di�erent locations can be expected to lead to di�erent wavelet phases at di�erent scales.This observation leads to a denoising technique we call \scale phase variation thresholding": ifjP k+1(i; j)� P k(i; j)j exceeds a threshold, the edge pixel is discarded as spurious at both scalesk and k + 1.3 Numerical ExperimentsWe conducted numerical experiments on a Sun workstation with an X Windows system. Theprograms are written in C and Fortran; some IMSL (International Mathematics and StatisticsLibrary) routines were called to generate Poisson random numbers. Figure 1 is the Shepp-Loganphantom. It consists of 10 ellipses, each with a di�erent gray level. This phantom has been usedas a standard to test the accuracy of restoration algorithms. Figure 2 is the \raysum image" (orundistorted sinogram) of the Shepp-Logan phantom. A simulated sinogram is given in Figure 3.Figures 4 to 8 give some numerical results obtained in this study. The size of the original image(Shepp-Logan phantom) is 128�128 and the size of the sinogram is 180�128, though in Figures2 and 3, we display only the �rst 128 rows of the sinogram. The pixel values of all images arenormalized to 8 bits (ranged from 0 to 255). The same noisy sinogram, shown in Figure 3, wasused for all of Figures 4 through 8; it had a total of about 2 million photons.Figure 4 is the image reconstructed from a noisy sinogram using the convolution back pro-jection (CBP) method. Small features in the Shepp-Logan phantom are virtually undetectable.This indicates that a �ltering algorithm is necessary before applying the CBP algorithm. Figure5 is the image reconstructed from the noisy sinogram, using CBP in conjunction with a parabola�lter. Some small features present in the Shepp-Logan phantom can be discerned, but the imageis blurred. Figure 6 is the image reconstructed from the noisy sinogram, using CBP with awavelet modulus �lter. In order to obtain Figure 6, a wavelet transform was performed up to 3scales. Modulus thresholding values were 0.2 for scale 1, 0.1 for scale 2, and 0.05 for scale 3. Thedecay rate from one scale to the next was thresholded by 0.1. (These values were determinedby trial and error and are roughly optimal among the values considered.) Some small featuresof the Shepp-Logan phantom can be discerned in Figure 6, but the image quality is not good,perhaps inferior to that of Figure 5. Figures 7 and 8 are images obtained from the noisy sinogramby using CBP combined with one of the wavelet phase �lters proposed here. In Figure 7, thewavelet phase �lter is used with a wavelet modulus �lter of the sort used in obtaining Figure 6;8
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Fig. 1. Shepp-Logan Phantom Fig. 2. Raysum Image
Fig. 3. Noisy Raysum Fig. 4. CBP Reconstruction
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Fig. 5. Parabola Filter Fig. 6. Wavelet Modulus Filter
Fig. 7. Modulus+Phase Filter Fig. 8. Wavelet Phase Filter
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